Furan-2(3H)- and -2(5H)-ones. Part 8. ${ }^{1}$ C onformation and di- π methane reactivity of the 4,7-disubstituted tetrahydroisobenzofuran-1one system: a mechanistic and exploratory study

O samu M uraoka, ${ }^{*, a}$ Genzoh Tanabe, ${ }^{\text {a }} \mathbf{E m i}$ Yamamoto, ${ }^{\text {a }} \mathbf{M}$ asaru 0 no, ${ }^{\text {a }}$ Toshie M inematsu ${ }^{\text {a }}$ and Takayoshi Kimura ${ }^{\text {b }}$
${ }^{\text {a }}$ F aculty of Pharmaceutical Sciences, K inki U niversity and Faculty of Sciences and Technologies, K inki U niversity, ${ }^{\text {b }}$ K owakae 3-4-1, Higashi-osaka, O saka 577, J apan

Abstract

Photoirradiation of cis- and trans-4,7-diphenyl-1,3,4,7-tetrahydroisobenzofuran-1-one cis- and trans-14 and its 4-methyl analogues cis- and trans-15 afford the corresponding di- π-methane rearrangement products 27, 28 and 24 in moderate yields. M M 2 calculations for the cis- and trans-4,7-diphenyl substrates cis- and trans-14 showed that the planar structure is most stable for both compounds and that the molecular energy difference between the planar structure and the boat conformation is small enough for a boat-planar-boat conversion. On the basis of the calculations, the di- π-methane rearrangement of the compounds 14 and 15 is supposed to proceed via the boat conformation with a pseudoaxial phenyl substituent. A n X -ray structure determination of the two diphenyl substrates cis- and trans-14 provides strong support for the validity of the calculations in predicting optimum structures for cis- and transdisubstituted tetrahydroisobenzofuranone.

Introduction

The establishment of the general structural factors which influence excited state reactivity is one of the prime goals of organic photochemistry. In a previous paper, we reported the regiospecific di- π-methane rearrangement of β-apolignans $\mathbf{1}$ into the corresponding tetrahydrocycloprop[a]indenes 2 and showed that the rearrangement is common among β-apolignans irrespective of their ring substituents; we also showed that only the phenyl substituent migrates among the three possible di- π methane systems found in the β-apolignans $1 .{ }^{2}$ In order to establish the origin of the regioselectivity in the photolysis, we initially investigated the photoreactivity of 3,4-dibenzyl-2,5-dihydrofuran-2-one 3, a system lacking the stereochemical rigidity of compounds $\mathbf{1}$, where reverse selectivity of migration was observed to afford the cyclopropane lactone 4 as the sole rearrangement product. ${ }^{3}$ In a further study using the monobenzyl analogues, 3 -benzyl-2,5-dihydrofuran-2-ones 5, characteristic photoarylation leading to the corresponding tetrahydroindenofuranones $6(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}, \mathrm{c}-\mathrm{Hex})$ was found to occur with the introduction of substituents on the 'central methane' carbon; in this work only the phenyl substituted substrate $5(\mathrm{R}=\mathrm{Ph})$ resulted in a di- π-methane rearrangement to afford a cyclopropano lactone $7(\mathrm{R}=\mathrm{Ph})$ in moderate yield. ${ }^{4}$ On the other hand, upon irradiation of 4-benzyl counterparts 8, characteristic acceleration of the di- π-methane rearrangement was observed upon introduction of any alkyl substituent at the 'central methane' carbon to afford the corresponding cyclopropano lactones 9 in good yields. ${ }^{5}$ These observations suggested that the stereochemical rigidity of β-apolignans 1 could be responsible for the efficient regioselectivity of the rearrangement. Thus, two substrates 10 and 11 having such rigidity were next examined, and we showed that the former, 10, afforded the corresponding di- π-methane rearrangement product 12, while its dihydro analogue 11 produced mainly photo-reduced products $13 .{ }^{1}$ Since compound 10 was suggested to be in rapid boat-to-boat interconversion in solution (see Scheme 1), it was postulated that the rearrangement had been caused by the interaction of the two π-orbitals through the boat A conformation where the pendant phenyl is pseudoaxially oriented. ${ }^{1}$ In order to gain further insight into the relationship
between the photoreactivity and the stereochemical features of thetetrahydroisobenzofuranonesystem, weexamined the photoreaction of the system bearing a substituent at the C-4 position, cis- and trans-4,7-diphenyl-1,3,4,7-tetrahydroisobenzofuran-1one cis- and trans-14, and their 4-methyl analogues, cis- and trans-4-methyl-7-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-
one cis- and trans-15. We presumed that for the cis-substrates cis-14 and cis-15 the boat A conformation is little involved because of the transannular steric effect between the two substituents at the C-4 and C-7 positions, while for the transisomers trans- 14 and trans- 15 it would be. Compound 3 had afforded compound 4, a phenyl migration product at the β ketonic position upon irradiation; ${ }^{3}$ therefore, the migration aptitude of the two phenyl moieties in compounds $\mathbf{1 4}$ is also of interest.

Results

Synthesis of the photochemical substrates 14 and 15
The Diels-A lder reaction of (1E, 3E)-1,4-diphenylbuta-1,3diene 16^{6} with dimethyl acetylenedicarboxylate (DMAD) gave a 1,4-adduct, dimethyl cis-3,6-diphenylcyclohexa-1,4-diene-1,2dicarboxylate cis- $17^{6}(90 \%)$. Treatment of this with perchloric acid in formic acid ${ }^{7}$ followed by sodium boranuide reduction of the resulting anhydride, cis-4,7-diphenyl-1,3,4,7-tetrahydroisobenzofuran-1,3-dione cis-18, gave the desired lactone cis-14 (78\%). It is interesting to note that the lactone cis14, when treated with 1,4-diazabicyclo [2.2.2]octane (DABCO) in methanol, afforded the corresponding trans-isomer trans-14 (17%), although isomerisation of the double bond predominated to produce a conjugated diene, 4,7-diphenyl-1,3,6,7-tetra-hydroisobenzofuran-1-one 19, as the main product (66%) with recovery of a small amount of the starting material cis-14 (12\%). Prolonged reaction resulted in the increased formation of the undesirable dienone 19 (80%).
4-M ethyl-substituted analogues cis- and trans- 15 were prepared in a similar manner starting from a ca. 5:1 mixture of ($1 \mathrm{E}, 3 \mathrm{E}$)- and ($1 \mathrm{E}, 3 \mathrm{Z}$)-1-phenylpenta-1,3-diene (3E)- and (3Z)$20,{ }^{8}$ as a mixture with their regioisomers, cis- and trans-7-methyl-4-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one cisand trans-21, in $45,9,18$, and 3% overall yields, respectively, via

1

3

Scheme 1

Scheme 2 Reagents and conditions: i, DMAD, $150^{\circ} \mathrm{C}$ or benzene, reflux; ii, $\mathrm{HClO}_{4}, \mathrm{HCO}_{2} \mathrm{H}$, reflux; iii, NaBH ; iv, $\mathrm{DABCO}, \mathrm{MeOH}$, room temp.
the corresponding 1,4-adducts, dimethyl 3-methyl-6-phenyl-cyclohexa-1,4-diene-1,2-dicarboxylate 22, and anhydrides, 4-methyl-7-phenyl-1,3,4,7-tetrahydroisobenzofuran-1,3-dione 23. When a ca. 1:5.5 mixture of cis- and trans-dienes cis- and
trans- $\mathbf{2 0}$ was employed as the starting material, the trans-isomer trans-15 was obtained as the major product (50\%).

Both cis- and trans-diphenyl compounds cis- and trans-14 displayed three characteristic IR absorptions at 1633, 1688 and

Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra for the 1,3,4,7-tetrahydroisobenzofuranones $\mathbf{1 4}$ and $\mathbf{1 5}$

${ }^{a}{ }^{1} \mathrm{H}$ chemical shift values (δ ppm from $\mathrm{SiM} \mathrm{e}_{4}$) are followed by multiplicity of the signals and coupling constants (J / Hz). ${ }^{\mathrm{b}} \mathrm{L}$ etters $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q in parentheses indicate quaternary, tertiary, secondary and methyl carbons, respectively.
$1750-1760 \mathrm{~cm}^{-1}$ corresponding to the dienone system. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the cis-isomer cis-14, characteristic homoallylic coupling (J $4,7.7 .0 \mathrm{~Hz}$) was observed, while the corresponding coupling was not detected with respect to the transisomer trans-14 because of overlapping of signals due to protons at $\mathrm{C}-4$ and $\mathrm{C}-7$. Although both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic properties were consistent with the 4,7-diphenylisobenzofuranone structure 14 (Table 1), it was difficult to discriminate unambiguously between these two isomers cis- and trans-14. Thus, final structural confirmation was established by the X-ray crystallographic analysis (see Discussion).
The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19 displayed only a single olefinic signal at $\delta_{\mathrm{H}} 6.28$, and signals due to methylene protons at C-6 appeared as an A B-type quartet at $\delta_{\mathrm{H}} 2.95$ and 3.12. Four singlets at $\delta_{\mathrm{c}} 126.0,133.5,156.0$ and 172.9 and a doublet at $\delta_{c} 132.6$ corresponded to the conjugated dienone carbons, whose correlation was confirmed on the basis of an incredible natural abundance double quantum transfer experiment (INADEQUATE).

Spectroscopic properties of their methyl analogues cis- and trans- 15 were correlated with those of the diphenyl counterparts cis- and trans-14 as shown in Table 1. With respect to the cis-isomer cis-15, a considerable nuclear Overhauser effect (N OE) has been detected between the methyl and aromatic protons at the ortho-position as shown in Scheme 2, supporting the depicted configuration. In the ${ }^{1} H N M R$ spectra of their regioisomers cis- and trans-21, signals due to the lactonic methylene moiety shifted upfield due to anisotropy of the phenyl group.

Photolysis of the cis- and trans-lactones 14 and 15

Upon irradiation in methanol, both cis- and trans-4-methyl substrates cis- and trans- $\mathbf{1 5}$ showed similar photoreactivity with each other, giving 6α - and 6β-methyl-3a α-phenyl-3,3a,3b,

6-tetrahydro-1H -cyclopenta[1,3]cyclopropa[1,2-c]furan-3-one 6α - and $6 \beta-24$, in 22% yield each, the efficiency of the rearrangement having decreased compared to that of the rearrangement of compound $\mathbf{1 0}$. Additionally, formation of isomeric photorearrangement products, 1α - and 1β-methyl-3ad-phenyl-1,1a,3a,4-tetrahydro-6H -cyclopropa[1,5]cyclo-penta[1,2-c]furan-4-one 1α - and 1β-25 and a dehydrogenated product, 4 -methyl-7-phenyl-1,3-dihydroisobenzofuran-1-one 26, were produced with recovery of 32% of the reactant trans15. Prolonged reaction caused decomposition of the photoproducts.

U pon irradiation of the trans-diphenyl lactone trans-14 in methanol, two expected rearrangement products, 3a $\alpha, 6 \beta$ -diphenyl-3,3a,3b,6-tetrahydro-1H -cyclopenta[1,3]cyclopropa-[1,2-c]furan-3-one $6 \beta-27$ and 3a, 6β-diphenyl-3,3a, $3 \mathrm{~b}, 6$ -tetrahydro-1H -cyclopenta[1,3]cyclopropa[1,2-c]furan-1-one $6 \beta-28$, were obtained in 36 and 14% yields, respectively, after 9 h of irradiation. Additionally, formation of a small amount of the isomeric photorearrangement products, $1 \alpha, 3 a \alpha-$ and $1 \beta, 3 \mathrm{a} \alpha$-diphenyl-1,1a,3a,4-tetrahydro-6H -cyclopropa[1,5]-cyclopenta[1,2-c]furan-4-one 1α - and $1 \beta-29$, and a dehydrogenated product, 4,7-diphenyl-1,3-dihydroisobenzofuran-1-one 30 was also detected.

Upon irradiation of the cis-isomer cis-14 under the same conditions, a mode of rearrangement similar to that of the trans-counterpart trans-14 was observed, giving 6α-isomers of cyclopropano lactones, 3a $\alpha, 6 \alpha$-diphenyl-3,3a,3b,6-tetra-hydro-1H -cyclopenta[1,3]cyclopropa[1,2-c]furan-3-one 6 6 -27 and 3a $\alpha, 6 \alpha$-diphenyl-3,3a,3b,6-tetrahydro-1H-cyclopenta[1,3]-cyclopropa[1,2-c]furan-1-one $6 \alpha-28$ in 28 and 5% yields, respectively.

Upon acetone-sensitised irradiation, reactions proceeded more effectively with all reactants 14 and $\mathbf{1 5}$, affording the same

Table 2

Substrate	Solvent	Reaction time (t/h)	Products (isolated yield \%)					
			$6 \alpha-24$	$6 \beta-24$	$1 \alpha-25$	1 β-25	26	R ecovered
trans-15	M ethanol	15	-	22	2	6	9	32
trans-15	A cetone	3	-	18	4	3	9	27
cis-15	M ethanol	15	22	-	6	1	7	32
cis-15	A cetone	3	25	-	7	3	9	21

Table 3

Substrate	Solvent	Reaction time (t/h)	Products (isolated yield \%)							
			$6 \alpha-27$	6ß-27	$6 \alpha-28$	6ß-28	$1 \alpha-29$	1 $\beta-29$	30	Recovered
trans-14	M ethanol	9	-	36	-	14	1	2	3	21
trans-14	A cetone	3	-	20	-	14	1	3	7	21
cis-14	M ethanol	9	28	-	5	-	8	2	8	28
cis-14	A cetone	3	21	-	3	-	10	2	6	23

Scheme 3
members of photoproducts in a shorter reaction time. Results of the irradiations are summarised in Table 2 and 3 in Scheme 3.

The minor photoproducts 1α - and 1β-29 interconverted with each other when irradiated under the acetone-sensitised conditions, and transformation of compounds $1 \alpha-$ and $1 \beta-29$ to their isomeric cyclopropano lactones 27 was also detected on irradiation. M eanwhile, compounds 27 were unaffected by irradiation, and no reverse transformation leading to compounds $\mathbf{2 9}$ was detected. M ethyl analogues cis- and trans- $\mathbf{2 5}$ also showed similar photochemical behaviour to compounds cis- and trans-29, and so did compounds 24 to compounds 27.

Structural elucidation of photoproducts

The rearrangement products $\mathbf{2 4}$ and $\mathbf{2 5}$ showed similar spectroscopic properties. Their molecular weights, which are equal to the reactant 15, implied the formation of an additional ring system; introduction of a cyclopropano ring has been suggested on the basis of ${ }^{1} H$ NM R signals in the highfield region. Formation of the fused cyclopenteno ring was evident on the basis of the small cis-vinylic coupling constants, i.e., ca. 5.5 Hz each for $J_{4,5}$ of compounds 24 and $J_{2,3}$ of compound 25 compared with 10.0 Hz for $\mathrm{J}_{5,6}$ of the cyclohexeno moiety in the reactant 15 Compound 24 was unambiguously distinguished from compound 25 on the basis of their ${ }^{1} \mathrm{H}$ N M R spectroscopic properties; the former showed a single signal due to the sole cyclopropano ring proton, while the latter showed two kinds of signals due to protons at $\mathrm{C}-1$ and $\mathrm{C}-1 \mathrm{la}$ (Table 4). The configuration of the methyl group in compounds $\mathbf{2 4}$ and $\mathbf{2 5}$ was determined on the basis of NOE experiments (see Fig. 1).

$6 \alpha-24$

6及-24
$\curvearrowright: \mathrm{NOE}$

Fig. 1

1ß-25

Although the stereochemistry of two diphenyl photoproducts of $6 \beta-27$ and $6 \beta-28$ were deducible from N OE experiment as shown in Scheme 4, it was found difficult to discriminate unambiguously between these two photoproducts from the spectroscopic properties. Therefore, rigorous structural assignments for these two isomers $6 \beta-27$ and $6 \beta-28$ were achieved on the basis of degradation studies (see Scheme 4). Thus, hydrogenolysis of compound $6 \beta-27$ was carried out over palladium-on-carbon to give $3 \mathrm{a} \alpha, 6 \beta$-diphenyl-3,3a,3b,4,5,6-hexahydro-

Table $4 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra for the photoproducts $\mathbf{2 4}$ and $\mathbf{2 5}$

Position	$6 \alpha-24$		6及-24	
	$\delta_{\mathrm{H}}{ }^{\text {a }}$	$\delta_{c}{ }^{\text {b }}$	δ_{H}	$\delta_{\text {c }}$
1	$\begin{aligned} & 4.43 \mathrm{~d} 9.5 \\ & 4.60 \mathrm{~d} 9.5 \end{aligned}$	68.4 (t)	$\begin{aligned} & 4.51 \mathrm{~d} 9.0 \\ & 170 \mathrm{dan} \end{aligned}$	68.0 (t)
3		176.7 (s)		175.8 (s)
3 a		44.9 (s)		44.6 (s)
3b	2.55 br s-like	38.1 (d)	2.61 dd 2.5, 2.0	38.7 (d)
4	5.90 dm 5.5	127.4 (d)	5.74 dm 5.5	127.1 (d)
5	5.47 dd 5.5, 2.0	138.7 (d)	5.42 dd 5.5, 2.0	138.6 (d)
6	3.24 qm 7.5	40.8 (d)	2.70 qm 7.5	39.7 (d)
6a		41.7 (s)		41.6 (s)
Me	1.00 d 7.5	12.4 (q)	1.14 d 7.5	15.8 (q)
A rom.	7.17-7.23 (2H, m)	127.7 (d), 128.1 (d)	7.13-7.19 (2H, m)	127.8 (d), 128.3 (d)
	7.24-7.34 (3H, m)	131.5 (s), 133.1 (d)	7.25-7.32 (3H, m)	130.6 (s), 131.6 (d)
Position	1 2 -25		1及-25	
	$\delta_{\text {H }}$	$\delta_{\text {c }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$
1	$1.66 \mathrm{br} \mathrm{qd} \mathrm{9.0}$,	21.0 (d)	$1.05 \mathrm{qd} \mathrm{6.0}$,	25.5 (d)
1 a	2.18 dd 9.0, 2.0	36.2 (d)	1.81 dd 3.5, 2.0	38.4 (d)
2	5.88 ddd 5.5, 2.0, 1.0	131.2 (d)	6.14 ddd 5.5, 2.0, 1.0	136.2 (d)
3	6.19 dd 5.5, 1.0	133.4 (d)	5.82 d 5.5	131.2 (d)
3 a		62.6 (s)		64.4 (s)
4		177.0 (s)		177.6 (s)
6	$\begin{aligned} & 4.20 \mathrm{~d} 9.0 \\ & 4.85 \mathrm{~d} 9.0 \end{aligned}$	72.8 (t)	$\begin{aligned} & 4.42 \mathrm{~d} 9.0 \\ & 4.80 \mathrm{~d} 9.0 \end{aligned}$	70.2 (t)
6a		34.1 (s)		35.9 (s)
M e	0.72 d 6.5	8.3 (q) 127.7 (d)	1.17 d 6.0	13.1 (q) 127.7 (d)
A rom.	$7.25-7.40(3 \mathrm{H}, \mathrm{~m})$	$127.0 \text { (d), } 127.7 \text { (d) }$	7.25-7.42 ($5 \mathrm{H}, \mathrm{m}$)	$126.6 \text { (d), } 127.7 \text { (d) }$
	7.42-7.48 (2H, m)	128.7 (d), 135.3 (s)		129.0 (d), 137.2 (s)

${ }^{a}{ }^{1} \mathrm{H}$ chemical shift values (δ ppm from SiM_{4}) are followed by multiplicity of the signals and coupling constants (J/Hz). ${ }^{\mathrm{b}} \mathrm{L}$ etters $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q in parentheses indicate quaternary, tertiary, secondary and methyl carbons, respectively.

1H -cyclopenta[1,3]cyclopropa[1,2-c]furan-3-one 31 (89\%) with the concomitant formation of a spiro compound, 2,3'-diphenylspirocyclopentane-1,4'-tetrahydrofuran-2'-one 32 (5\%). In the ${ }^{1} H$ N M R spectrum of the minor product 32, a oneproton singlet at $\delta_{\mathrm{H}} 3.52$, a signal typical for the α-methine proton of the phenyl acetate system, was detected, supporting the depicted structure 32, a product of cyclopropano ringcleavage at the $C(3 a)-C(3 b)$ bond in compound $6 \beta-27$.
The regioisomer $6 \beta-28$ gave the corresponding reduced product, $3 \mathrm{Za} \mathrm{\beta}, 6 \alpha$-diphenyl-3,3a,3b,4,5,6-hexahydro-1H-cyclo-penta[1,3]cyclopropa[1,2-c]furan-3-one 33 in 92% yield. No evidence for the formation of a product of cyclopropano ringcleavage was detected in spite of careful examination of the reaction.
In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $6 \beta-27$ and $6 \beta-28$, a significant upfield shift owing to the shielding effect of the phenyl moiety at C-3a was observed with respect to the signals due to C-6 protons (at $\delta_{\mathrm{H}} 3.70$ and 3.63 , respectively), while those due to the corresponding protons of their 6α-isomers 6α 27 and $6 \alpha-28$ were observed at $\delta_{\mathrm{H}} 4.46$ and 5.00 , respectively, indicating the depicted configuration of the 6β-isomers in Scheme 4.
The 6α-isomers $6 \alpha-27$ and $6 \alpha-28$ were distinguished from each other on the basis of chemical shifts of the signals due to C- 6 methine protons; the signal which appeared at $\delta_{\mathrm{H}} 4.46$ was assigned to one of the protons in compound $6 \alpha-27$, and one at $\delta_{\mathrm{H}} 5.00$ to compound $6 \alpha-28$, the downfield shift of which would be rationalised in terms of the anisotropy of the lactone carbonyl moiety. Signals due to aromatic protons at the ortho position in both phenyl rings shifted upfield to $\delta_{\mathrm{H}} 6.53-6.76$ as a result of the anisotropy of the facing phenyl moiety; this also supported the assigned cis-stereochemistry.

The configuration of the phenyl group in the cyclopropano lactones 1α - and $1 \beta-29$ was determined on the basis of vicinal coupling constants between the $\mathrm{C}-1$ and $\mathrm{C}-1 \mathrm{a}$ protons. The
signal with a larger coupling constant ($\mathrm{J}_{\mathrm{i}, \mathrm{la}} 8.5 \mathrm{~Hz}$) \dagger was assigned to compound $1 \alpha-29$, while that with the smaller constant $\left(J_{1,1 \mathrm{a}} 3.5 \mathrm{~Hz}\right) \dagger$ was assigned to the trans-isomer $6 \beta-29$. F urther support for the assignments made was given by differential NOE experiments (see Scheme 4).
Exposure of the two stereoisomers 1α - and $1 \beta-29$ to hydrogenolysis afforded the same degradation product, 3a-benzyl-6a-phenylhexahydro-1H-cyclopenta[c]furan-1-one 34 in 90 and 89% yields from compounds 1α - and $1 \beta-29$, respectively. Compound 34 displayed an $A B$ quartet at $\delta_{\mathrm{H}} 2.11$ and 2.27 arising from benzylic methylene protons, and the relative stereochemistry of the methylene moiety and the phenyl group at C-6a was found to be in a cis relationship on the basis of NOE enhancements as shown in Scheme 4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectral data for compounds 27, 28 and $\mathbf{2 9}$ are listed in Table 5.

Discussion

In our preceding studies, compound $\mathbf{1 0}$ was found to afford the phenyl migration product 12 in $43-48 \%$ yield. ${ }^{1}$ Both 4 -phenyland 4-methyl-substrates $\mathbf{1 4}$ and $\mathbf{1 5}$ have shown similar photoreactivity to that of compound $\mathbf{1 0}$, giving the di- π-methane rearrangement products as the major product. U nexpectedly, compounds cis-14 and cis-15 have also afforded the corresponding di- π-methane rearrangement products $6 \alpha-27$ and $6 \alpha-24$, respectively. With respect to 4 -methyl-substrates 15 no difference in photoreactivity was observed between the cis- and the trans-isomer cis- and trans-15, although the efficiency of the rearrangement decreased as compared with compound 10.
U pon irradiation of the 4,7-diphenyl substrates cis- and

[^0]Table $5{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for the photoproducts $\mathbf{2 7 , 2 8}$ and $\mathbf{2 9}$

Position	6 - 27		6ß-27	
	$\delta_{\mathrm{H}}{ }^{\text {a }}$	$\delta_{\mathrm{c}}{ }^{\text {b }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$
1	$4.79 \text { d } 9.0$	68.8 (t)	$\begin{aligned} & 4.01 \mathrm{~d} 10.0 \\ & 4.31 \mathrm{~d} 10.0 \end{aligned}$	68.5 (t)
3		176.1 (s)	$4.31 \mathrm{~d} 10.0$	175.5 (s)
3a		43.4 (s)		46.1 (s)
3 b	2.61 br s-like	38.0 (d)	2.70 dd 2.5, 2.0	38.9 (d)
4	6.16 dm 5.5	129.92 (d)	6.03 dm 5.5	129.1 (d)
5	5.87 dd 5.5, 2.0	136.4 (d)	5.50 dd 5.5, 2.0	136.3 (d)
6	$4.46 \mathrm{br} \mathrm{ddd} 2.5,2.0 \times 2$	50.7 (d)	3.70 ddd 2.5, 2.0×2	51.0 (d)
A rom.		41.9 (s)		42.9 (s)
	6.53-6.57 (2H , m) 6.63-6.67 (2H 7.04-7.21 (6H	127.0 (d), 127.4 (d)	$\begin{aligned} & 7.20-7.26(2 \mathrm{H}, \mathrm{~m}) \\ & 7.24-7.28(2 \mathrm{H}, \mathrm{~m}) \\ & 7.28-7.40(6 \mathrm{H}, \mathrm{~m}) \end{aligned}$	127.8 (d), 128.1 (d)
		127.7 (d), 128.1 (d)		128.3 (d), 128.5 (d)
		$128.2 \text { (d), } 129.86 \text { (s) }$		$128.9 \text { (d), } 130.5 \text { (s) }$
		133.0 (d), 136.8 (s)		131.7 (d), 137.5 (s)
Position	6 α-28		6ß-28	
	$\delta_{\text {H }}$	$\delta_{\text {c }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$
1	$\begin{aligned} & 4.30 \mathrm{~d} 10.0 \\ & 4.35 \mathrm{dd} 10.0,1.5 \end{aligned}$	175.6 (s)		172.4 (s)
3		76.0 (t)	$\begin{aligned} & 4.29 \text { d } 10.0 \\ & 4.39 \text { d } 10.0 \end{aligned}$	73.4 (t)
3 a		42.1 (s)		
3 b	2.73 dd 2.0×2	43.2 (d)	2.90 dd 3.0, 2.0	43.4 (d)
4	6.01 ddd 5.5, 2.0×2	128.3 (d)	5.99 ddd 5.5, 2.0×2	127.7 (d)
5	5.83 dd 5.5, 2.0	135.5 (d)	5.33 dd 5.5, 2.0	136.2 (d)
6	$5.00 \mathrm{br} \mathrm{s-like}$	49.2 (d)	3.63 ddd 3.0, 2.0×2	$50.2 \text { (d) }$
6a		44.4 (s)		$46.0 \text { (s) }$
A rom.	6.64-6.68 (2H 6.73-6.76 (2H 7.00-7.16 (6H			
		$127.86 \text { (d), } 128.90 \text { (d) }$	$7.28-7.32(2 \mathrm{H}, \mathrm{~m})$	$128.13 \text { (d), } 128.8 \text { (d) }$
			7.26-7.41 (6H, m)	$129.0 \text { (d), } 130.9 \text { (d) }$
		$137.7 \text { (s) }$		$133.5 \text { (s), } 137.1 \text { (s) }$
Position	1 1 -29		18-29	
	δ_{H}	$\delta_{\text {c }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$
1	2.72 br d 8.5	32.1 (d)	2.16 br d 3.5	29.7 (d)
1 a	2.49 dd 8.5, 2.0	37.0 (d)	2.64 dd 3.5, 2.0	35.6 (d)
2	6.26 ddd 5.5, 2.0, 1.0	133.6 (d)	6.28 ddd 5.5, 2.0, 1.0	135.9 (d)
3	5.98 dd 5.5, 1.0	133.2 (d)	6.00 d 5.5	$132.2 \text { (d) }$
3 a		$63.2 \text { (s) }$		$65.4 \text { (s) }$
4		177.3 (s)		177.6 (s)
6	4.38 d 9.5	72.6 (t)	4.41 d 9.5	69.9 (t)
	5.09 d 9.5		4.61 d 9.5	
6 a A rom.	$\begin{aligned} & 6.57-6.60(2 \mathrm{H}, \mathrm{~m}) \\ & 6.61-6.64(2 \mathrm{H}, \mathrm{~m}) \\ & 6.86-7.14(6 \mathrm{H}, \mathrm{~m}) \end{aligned}$	37.9 (s)		37.1 (s)
		126.0 (d), 126.5 (d)	7.06-7.10 (2H, m)	126.7 (d), 126.96 (d)
		127.2 (d), 127.4 (d)	7.23-7.36 (6H, m)	127.02 (d), 127.9 (d)
		128.3 (d), 130.9 (d)	7.39-7.44 (2H, m)	128.8 (d), 129.1 (d)
		131.9 (s), 136.0 (s)		136.3 (s), 137.0 (s)

${ }^{\text {a }}{ }^{1} \mathrm{H}$ chemical shift values ($\delta \mathrm{ppm}$ from SiM_{4}) are followed by multiplicity of the signals and coupling constants (J/Hz). ${ }^{\mathrm{b}} \mathrm{L}$ etters $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q in parentheses indicated quaternary, tertiary, secondary and methyl carbons, respectively.
trans-14, the rearrangement was observed in both di- π-methane systems $[C(3 a)=C(7 a)-C(7)-$ phenyl and $C(7 a)=C(3 a)-C(4)-$ phenyl] to give two isomeric rearrangement products 27 and 28 , formation of the former having been favoured. In order to explain these variations observed in photochemical reactivity, the stereochemical properties of the photo-substrates $\mathbf{1 4}$ and $\mathbf{1 5}$ have been examined.

The stereochemistry of cyclohexa-1,4-diene 35, 1,4-dihydronaphthalene 36 and 9,10-dihydroanthracene 37 and their derivatives has been the subject to a number of investigations and, after a long controversy, it now appears that compound 35 is planar, with substituent groups causing only modest derivation from the preferred conformation. ${ }^{11}$ On the other hand compound 37 was found to exist in a puckered conformation in the solid state with a folding angle (angle between the planes containing the benzene rings) of 145°. Because the solution NMR spectra at low temperature did not resolve individual pseudoaxial and pseudoequatorial protons in the central ring, it
was assumed that compound 37 exists as rapidly equilibrating boat conformations (37A and 37A') (Fig. 2). The tendency toward a boat conformation is reported to increase in the series $35<36<37$.
The solid-state structure of both diphenyl-substrates cis- and trans- 14 has been investigated in the present study by X-ray crystallography, and a planar structure has been established for both compounds cis- and trans-14 (see Fig. 3 and Fig. 4). M olecular mechanics calculations also revealed that the planar structure is most stable for both cis- and trans-14. \ddagger H owever, calculations indicated that difference of steric energy (ca. 6 kcal $\left.\mathrm{mol}^{-1}\right) \S$ between the planar and the boat structure was small (see Fig. 5) with respect to both compounds cis- and trans-14.

[^1]

$1 \beta-29$
Scheme 4 Reagents: $\mathrm{i}, \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$
It was not hard for the two phenyl moieties in compound cis-14 to exist in a bi-pseudoaxial configuration by facing each other in a parallel fashion (see Fig. 5); this behaviour was attributable to rapid boat-to-boat interconversion. The ${ }^{1} \mathrm{H}$ NMR spectrum of the cis-isomer cis-14 also supported the rapid boat-to-boat interconversion or planar structure in solution, its homoallylic coupling constant having been in between (${ }_{4,7} 7.0 \mathrm{~Hz}$) those of the bi-pseudoaxial and bi-pseudoequatorial protons in the systems. 9 Thus, previous speculation to the effect that a phenyl moiety in a pseudoaxial orientation would migrate has been strongly supported

It is noteworthy that formation of compounds $\mathbf{2 7}$ is preferred to that of compounds 28 upon irradiation of both cis- and trans-diphenyl substituted substrates cis- and trans-14; a reverse selectivity of migration compared with compound $\mathbf{3}$ has been observed. The cis-isomer cis-14 showed a stronger tendency, giving compounds $6 \alpha-27$ and $6 \alpha-28$ in a ratio of $28: 5$. A likely explanation for the preferential formation of compounds 27 over compound $\mathbf{2 8}$ would be as follows. In addition to the boat-to-boat inversion, rotation of the phenyl moiety around an axis formed between C-4 (or C-7) and an ipso-carbon of the phenyl

[^2]

35

36

37

Fig. 2

Fig. 3 M olecular structure of compound cis-14 determined by X-ray crystallography
moiety would have importance in bringing about photoselectivity. Thus, the steric effect between one of the C-3 methylene hydrogens and the C-4 phenyl moiety might, through inhibition of the latter, rotate it insufficiently for the rearrangement (see Fig. 5). With respect to the cis-isomer cis-14, throughspace interaction between the two phenyl substituents would exert an additional effect to inhibit the C-4 phenyl moiety, thus ensuring a favourable angle against the $\mathrm{C}(3 \mathrm{a})=\mathrm{C}(7 \mathrm{a})$ double bond for the rearrangement, and resulting in regioselectivity in the photoreaction. Owing to the restricted rotation of the phenyl moieties in the boat conformation with pseudoaxial phenyl orientation, two curves (Type A and Type B in Fig. 5) were obtained in M M 2 calculations which reflect the two possible relative geometries of the facing phenyl groups.
The preferential formation of compound $\mathbf{2 4}$ over compound 25 and also compounds $\mathbf{2 7}$ over compound $\mathbf{2 9}$ upon irradiation

Fig. 4 M olecular structure of compound trans- 14 determined by X -ray crystallography
of compounds 14 and $\mathbf{1 5}$, respectively, is attributable to the reduced electron flow; route a leading to the formation of compounds $\mathbf{2 4}$ (or 27) has been preferred to route b to compounds 25 (or 29) as shown in Scheme 5.

In conclusion, both cis- and trans-4,7-disubstituted tetrahydroisobenzofuranones were found to be planar in the solid state, and the good agreement between the computation results and the X -ray data provided strong support for the validity of the calculations in predicting optimum structures for such compounds. The computation results also showed that these compounds are in rapid boat-to-boat interconversion in solution, and supported the previous prediction that the rearrangement would proceed via the boat conformation with a pseudoaxially oriented phenyl group. The origin of the characteristic regioselectivity observed especially in the photolysis of the cisdiphenyl substrate cis- $\mathbf{1 4}$ has still to be resolved, but is likely to be rationalised in terms of a non-bonded steric effect between the two phenyl groups in the pseudoaxial orientation.

Experimental

M ps were determined on a Yanagimoto M P-3S micro-melting point apparatus, and mps and bps are uncorrected. IR spectra were measured on a Shimadzu IR-435 grating spectrophotometer. NMR spectra were recorded on either a JEOL JNM -GSX $270\left(270 \mathrm{MHz}^{1} \mathrm{H}, 67.5 \mathrm{MHz}^{13} \mathrm{C}\right.$) or a JEOL JNM GSX $500\left(500 \mathrm{M} \mathrm{Hz}{ }^{1} \mathrm{H}, 125 \mathrm{M} \mathrm{Hz}{ }^{13} \mathrm{C}\right)$ spectrometer. Chemical shifts (δ) and coupling constants (J) are given in ppm and Hz , respectively. All the NMR spectra were taken as CDCl_{3}
solutions with tetramethylsilane as internal standard. Low- and high-resolution mass spectra (electron impact) were recorded on either a Shimadzu QP 1000EX spectrometer or a JEOL JM S-HX 100 spectrometer. UV -visible spectra were taken on a Hitachi 557 spectrophotometer. Column chromatography was effected over M erck K ieselgel 60 (230-400 mesh) with a pump (FMI model RP). Preparative thin-layer chromatography (PTLC) was performed on M erck K ieselgel $60 F_{254}$. All the organic extracts were dried over anhydrous magnesium sulfate prior to evaporation.

D iels-Alder reaction of ($1 \mathrm{E}, 3 \mathrm{E}$)-diphenylbuta-1,4-diene 16 with dimethyl acetylenedicarboxylate (DMAD)

A mixture of ($1 \mathrm{E}, 3 \mathrm{E}$) -diphenylbuta-1,4-diene $\mathbf{1 6}^{6}$ ($5.75 \mathrm{~g}, 27.9$ mmol) and DM AD ($4.9 \mathrm{~g}, 34.5 \mathrm{mmol}$) was heated at $150^{\circ} \mathrm{C}$ for 2.5 h . A fter being cooled, the residue was triturated with diethyl ether to give a pale yellow solid (9.6 g) which, on recrystallisation from methanol, gave dimethyl cis-3,6-diphenylcyclohexa-1,4-diene-1,2-dicarboxylate 17 ($8.75 \mathrm{~g}, 90 \%$) as prisms, mp 97$99^{\circ} \mathrm{C}$ (lit., ${ }^{6} 97-98^{\circ} \mathrm{C}$). The spectral properties of compound 17 were in accord with those reported. ${ }^{6}$
cis-4,7-D iphenyl-1,3,4,7-tetrahydroisobenzofuran-1,3-dione 18
A mixture of the dimethyl ester $17(8.3 \mathrm{~g}, 23.9 \mathrm{mmol})$, formic acid $\left(80 \mathrm{~cm}^{3}\right)$, and perchloric acid $\left(4 \mathrm{~cm}^{3}\right)$ was heated under reflux for 2 h . The reaction mixture was allowed to stand at room temperature, and deposited crystals were collected by filtration, and then washed with diisopropyl ether to give title anhydride 18 ($6.8 \mathrm{~g}, 94 \%$) as prisms, mp $157.5-158.5^{\circ} \mathrm{C}$ (Found: C, 79.5; H , 4.8\%; M^{+}, 302.0970. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, 79.46; H , $4.67 \% ; \mathrm{M}, 302.0942) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1849,1776,1680$ and $1633 ; \delta_{\mathrm{H}}$ 4.55-4.60 (2H, m), 5.98-6.01 (2H, m) and 7.29-7.44 ($10 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 39.7$ (d), 126.6 (d), 127.9 (d), 128.3 (d), 129.0 (d), 138.0 (s), 143.3 (s) and 163.3 (s); m/z 302 (${ }^{+}$, 99\%), 257 (49), 225 (96), 152 (55) and 91 (100).

Sodium boranuide reduction of the anhydride 18

A solution of the anhydride 18 ($6.3 \mathrm{~g}, 20.9 \mathrm{mmol}$) in THF (50 cm^{3}) was added dropwise to a stirred suspension of sodium boranuide ($880 \mathrm{mg}, 23.3 \mathrm{mmol}$) in THF ($50 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h . The mixture was then diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and acidified with 10% hydrochloric acid to pH 2 . A fter being stirred at room temperature for 2 h , the mixture was extracted with diethyl ether. The extract was washed successively with aq. sodium hydrogen carbonate and brine, and evaporated to give a pale yellow solid $(6.2 \mathrm{~g})$ which, on recrystallisation from a mixture of hexane and ethyl acetate, gave cis-4,7-diphenyl-1,3,4,7-tetrahydroisobenzo-furan-1-one cis-14 ($4.98 \mathrm{~g}, 83 \%$) as needles, $\mathrm{mp} 120-122^{\circ} \mathrm{C}$ (Found: C, 83.1; H, 5.7\%; M^{+}, 288.1169. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, 83.31; H, 5.59\%; M, 288.1151); $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 262$ and 268 tailing to ca. $290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 1063\right.$ and 753); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1760,1688$ and 1633; m/z $288\left(\mathrm{M}^{+}, 100 \%\right)$, 257 (87), 243 (79), 228 (57), 165 (44), 152 (43) and 91 (32). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R data of compound cis-14 are listed in Table 1.

Isomerisation of the cis-diphenyl lactone cis-14

A mixture of compound cis-14 ($2.09 \mathrm{~g}, 7.3 \mathrm{mmol}$), $1.4-$ diazabicyclo[2.2.2]octane ($100 \mathrm{mg}, 0.89 \mathrm{mmol}$) and methanol ($50 \mathrm{~cm}^{3}$) was stirred at room temperature for 21 h . The mixture was then poured into brine ($100 \mathrm{~cm}^{3}$) and extracted with diethyl ether. The extract was washed successively with 10% hydrochloric acid and brine, and then evaporated to give an oil (2.10 g) which, on column chromatography (hexane-ethyl acetate, 10:1), gave 4,7-diphenyl-1,3,6,7-tetrahydroisobenzofuran-1-one 19 ($1.38 \mathrm{~g}, 66 \%$), trans-4,7-diphenyl-1,3,4,7-tetrahydroisobenzo-furan-1-one trans-14 ($355 \mathrm{mg}, 17 \%$) and the starting material cis-14 (251 mg, 12\%).
In a similar manner, compound cis-14 ($2.00 \mathrm{~g}, 6.9 \mathrm{mmol}$) was treated with DABCO in methanol for 43 h to give compounds

boat (degree minus)

Fig. 5 M M 2 calculations for compounds cis- and trans-14

19, trans-14 and the starting material cis-14 in 80,13 and 3% yields, respectively.
1,3,6,7-Tetrahydroisobenzofuran-1-one 19. Prisms, mp 142$145{ }^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: C, 83.4; H, 5.7\%; M^{+}, 288.1148. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 83.31 ; \mathrm{H}, 5.59 \%$; M , 288.1151); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1748$ and 1656; $\delta_{\mathrm{H}} 2.95$ (1H, ddd, J 18.5, 6.0 and 3.0), 3.12 (1 H , ddd, J 18.5, 10.5 and 3.0), 3.99 (1 H, br ddd, J 10.5, 3.0 and 2.0), 4.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.5$ and 2.0), 5.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.5$ and 1.0), 6.28 ($1 \mathrm{H}, \mathrm{dd}$, J 6.0 and 3.0) and $7.23-7.45(10 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}} 32.6(\mathrm{t}), 33.2(\mathrm{~d}), 69.7$ (t), 126.0 (s), 126.7 (d), 126.9 (d), 127.1 (d), 128.1 (d), 128.6 (d), 128.8 (d), 132.6 (d), 133.5 (s), 137.0 (s), 141.6 (s), 156.0 (s) and 172.9 (s); m/z $288\left(\mathrm{M}^{+}, 100 \%\right), 243$ (85), 228 (30), 165 (24) and 91 (39).
trans-1,3,4,7-Tetrahydroisobenzofuran-1-one trans-14. Prisms, $\mathrm{mp} 150-152^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: C, 83.3; H $\left.5.8 \% ; \mathrm{M}^{+}, 288.1125\right) ; \lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 262$ and 268 tailing to ca. $290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 1595\right.$ and 1189); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1751, 1688 and 1633; m/z $288\left(\mathrm{M}^{+}, 65 \%\right)$, 257 (10), 243 (100), 228 (35), 165 (82), 152 (78) and 91 (32). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R data for compound trans-14 are listed in Table 1.

D iels- Alder reaction of ($1 \mathrm{E}, 3 \mathrm{E}$)- and ($1 \mathrm{E}, 3 \mathrm{Z}$)-1-phenyIpenta-1,3-diene (3E)- and ($3 Z$)-20 with D M A D
Following a method similar to that used for the preparation of the diester 17, a mixture of ($1 \mathrm{E}, 3 \mathrm{E}$)- and ($1 \mathrm{E}, 3 \mathrm{Z}$)-1-phenyl-penta-1,3-diene (3E)- and (3Z)-20 ${ }^{8}$ ($\mathrm{E} / \mathrm{Z}=\mathrm{ca} .5: 1 ; 4.8 \mathrm{~g}, 33.3$ $\mathrm{mmol})$ and DM AD ($6.0 \mathrm{~g}, 42.2 \mathrm{mmol}$) was heated at $150^{\circ} \mathrm{C}$ for 3 h . A fter removal of the excess of D M A D in vacuo, the residue was distilled at reduced pressure to give ca. 5.3:1 mixture of dimethyl cis- and trans-3-methyl-6-phenylcyclohexa-1,4-diene-1,2-dicarboxylate cis- and trans- 22 ($7.7 \mathrm{~g}, 81 \%$) as an oil.

In a similar manner, a mixture of the pentadienes (3 E)- and (3Z)-20 (E/Z = ca. 1:5.5; $2.81 \mathrm{~g}, 19.5 \mathrm{mmol}$) afforded a mixture of the diesters cis- and trans-22 (cis/trans = ca. 1:5; 14.4 g , 79%). The ratio of compounds cis- and trans-22 in the mixture was determined on the basis of the ${ }^{1} H N M R$ spectrum. A nalytical samples of both diesters cis- and trans-22 were obtained by means of column chromatography (hexane-ethyl acetate, $50: 1$).
M ore polar isomer cis-22. Oil, bp $150-151{ }^{\circ} \mathrm{C}(0.007 \mathrm{mmHg})$ (Found: M^{+}, 286.1220. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $\mathrm{M}, ~ 286.1205$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1721,1673$ and $1635 ; \delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0)$, $3.24(1 \mathrm{H}, \mathrm{dqm}, \mathrm{J} 7.0$ and 7.0$), 3.57(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.35-$ $4.39(1 \mathrm{H}, \mathrm{m}), 5.69(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0), 5.72(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0)$ and 7.15-7.40 (5H, m); $\delta_{\mathrm{c}} 21.6$ (q), 32.7 (d), 44.0 (d), 51.8 (q), 52.1 (q), 126.4 (d), 126.8 (d), 127.5 (d), 128.1 (d), 128.5 (d), 133.5 (s), 139.5 (s), 141.3 (s), 167.4 (s) and 168.7 (s); m/z 286 (${ }^{+}, 0.5 \%$), 254 (24), 239 (100), 195 (27), 167 (26), 152 (24) and 91 (16).

Less polar isomer trans-22. Oil, bp $152-153^{\circ} \mathrm{C}(0.008 \mathrm{mmHg})$ (Found: $\mathrm{M}^{+}, 286.1178$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1721,1671$ and 1637; $\delta_{\mathrm{H}} 1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0), 3.40(1 \mathrm{H}, \mathrm{dqm}, \mathrm{J} 7.0$ and 7.0$), 3.49$ (3 H , s), $3.78(3 \mathrm{H}, \mathrm{s}), 4.34-4.41(1 \mathrm{H}, \mathrm{m}), 5.68(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0), 5.71$ ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0$) and 7.13-7.33 (5H, m); $\delta_{\mathrm{c}} 20.2$ (q), 31.7 (d), 43.3 (d), 51.7 (q), 52.0 (q), 126.1 (d), 127.0 (d), 127.4 (d), 128.3 (d), 128.5 (d), 133.8 (s), 138.0 (s), 141.4 (s), 167.5 (s) and 168.6 (s); m/z 286 (M $\left.{ }^{+}, 0.5 \%\right), 254(67), 239(100), 195(71), 167(55)$, 152 (50) and 91 (27).
cis- and trans-4-M ethyl-7-phenyltetrahydroisobenzofuranones cis- and trans-15
Following a method similar to that used for the preparation of
the anhydride 18, a mixture of cis- and trans-dimethyl esters cisand trans-22 (cis/trans = ca. 5.3:1; 7.4 g, 25.9 mmol) was treated with perchloric acid in formic acid. A fter removal of the solvent, the residue was diluted with diethyl ether ($150 \mathrm{~cm}^{3}$), and the mixture was washed successively with aq. sodium hydrogen carbonate and brine, and then evaporated to give a mixture of the anhydrides, cis- and trans-4-methyl-7-phenyl-1,3,4,7-tetra-hydroisobenzofuran-1,3-dione cis- and trans-23, as a pale brown oil (cis/trans = ca. 5.3:1; 15.5 g), which was used in the next step without purification.
A solution of the brown oil $(5.5 \mathrm{~g})$ in THF ($10 \mathrm{~cm}^{3}$) was added to a suspension of sodium boranuide ($958 \mathrm{mg}, 25.3$ $\mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Work-up in a manner similar to that used for the preparation of compound cis-14 gave a pale brown oil (4.9 g), which was triturated with diethyl ether to give cis-4-methyl-7-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one cis-15 (1.02 g, 17%) as a solid. Removal of the diethyl ether from the washings left a pale brown semi-solid (3.9 g), which was subjected to column chromatography (hexane-ethyl acetate,10:1) to give compound cis- 15 ($1.63 \mathrm{~g}, 28 \%$); cis-7-methyl-4-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one cis-21 ($1.05 \mathrm{~g}, 18 \%$), trans-4-methyl-7-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one trans-15 ($526 \mathrm{mg}, 9 \%$) and trans-7-methyl-4-phenyl-1,3,4,7-tetrahydroiso-benzofuran-1-one trans-21 ($175 \mathrm{mg}, 3 \%$).

In a similar manner, a mixture of the dimethyl esters cis- and trans-22 (cis/trans = ca. 1:5.1; $4.4 \mathrm{~g}, 15.4 \mathrm{mmol}$) afforded compounds trans-15 (1.74 g, 50\%), trans-21 (592 mg, 17\%), cis-15 (310 mg, 9\%) and cis-21 ($138 \mathrm{mg}, 4 \%$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R data for compounds cis- and trans- 15 are listed in Table 1.
cis-Tetrahydroisobenzofuranone cis-15. Leaflets, mp 115$117^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 79.4; H, 6.2\%; M ${ }^{+}$, 226.1015. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, ~ 79.62 ; \mathrm{H}, 6.24 \% ; \mathrm{M}, 226.0994$); $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 261$ and 268 tailing to ca. $290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 429$ and 278); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1757,1687$ and $1636 ; \mathrm{m} / \mathrm{z}$ $226\left(\mathrm{M}^{+}, 49 \%\right), 211$ (100), 181 (30), 167 (48), 152 (25) and 91 (13).
trans-Tetrahydroisobenzofuranone trans-15. N eedles, mp 80$82^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: C, 79.6; H, 6.4\%; $\left.\mathrm{M}^{+}, 226.1015\right) ; \lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 261$ and 268 tailing to ca. 290 ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 463$ and 301); $v_{\text {max }}\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1758,1685\right.$ and 1635; m/z 226 ($\mathrm{M}^{+}, 52 \%$), 211 (100), 181 (33), 167 (53), 152 (28) and 91 (18).
cis-Tetrahydroisobenzofuranone cis-21. N eedles, $\mathrm{mp} 92-94{ }^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: C, 79.5; H, 6.4\%; M ${ }^{+}$, 226.1001); $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 261$ and 268 tailing to ca. 290 $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 565\right.$ and 376); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1757,1691$ and 1636; $\delta_{\mathrm{H}} 1.41$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0$), 3.13-3.28(1H , br m), 4.26 (1 H , dm, J 7.0), 4.41 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 17.0,2.0,0.5$), 4.65 (1 H , ddd, J 17.0, $2.5,1.0$), 5.74 (1 H, ddd, J $10.0,3.0,2.0$), 5.90 (1 H , ddd, J 10.0 , 3.5, 2.0), 7.13-7.19 (2H , m) and 7.25-7.40 (3H , m); $\delta_{\mathrm{c}} 19.8$ (q), 27.8 (d), 42.7 (d), 70.5 (t), 125.1 (d), 127.6 (d), 127.8 (d), 128.0 (s), 129.2 (d), 130.8 (d), 140.1 (s), 159.2 (s) and 173.1 (s); m/z 226 ($\mathrm{M}^{+}, 70 \%$), 211 (13), 181 (80), 167 (100), 152 (48) and 91 (38).
trans-Tetrahydroisobenzofuranone trans-21. Needles, mp 56$57^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: C, 79.8 ; H, 6.3\%; $\left.\mathrm{M}^{+}, 226.1006\right) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 261$ and 268 tailing to ca. 290 $\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 552\right.$ and 353); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1756,1686$ and $1634 ; \delta_{\mathrm{H}} 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.0), 3.16-3.31(1 \mathrm{H}, \mathrm{br}$ m), $4.26(1 \mathrm{H}$, br m), 4.35 (1 H, ddd, J 17.0, 2.5, 0.5), 4.65 (1H , ddd, J 17.0, 1.5, 1.5), 5.75 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.0,3.0,2.0$), 5.91 (1 H , ddd, J 10.0, 3.0, 2.0), 7.08-7.17 ($2 \mathrm{H}, \mathrm{m}$) and 7.23-7.38 (3H, m); $\delta_{\mathrm{c}} 19.3$ (q), 27.7 (d), 42.4 (d), 70.4 (t), 125.1 (d), 127.6 (d), 127.8 (d), 127.9 (s), 129.1 (d), 130.7 (d), 140.5 (s), 159.4 (s) and 173.0 (s); m/z 226 $\left(\mathrm{M}^{+}, 73 \%\right), 211$ (13), 181 (74), 167 (100), 152 (44) and 91 (30).

Photolysis of compounds 14 and 15

General procedure. All the irradiations, except those in a Pyrex test tube, were carried out to a solution of the reactant (100 mg) in methanol ($200 \mathrm{~cm}^{3}$) or acetone ($200 \mathrm{~cm}^{3}$) under
argon through a Pyrex filter in a water-cooled quartz immersion-well apparatus fitted with an Ishii UV-HT 200 W high-pressure mercury lamp. Solutions were degassed by a 30min sonication and a subsequent $30-\mathrm{min}$ argon purge prior to photolysis. All the irradiations were monitored by ${ }^{1} \mathrm{H}$ NMR measurements, and primary formation of the di- π-methane rearrangement products was detected at the beginning of the irradiation. Reactions were terminated before the reaction mixture became too complex to be fractionalised (time and product distribution are given in Tables 2 and 3 in Scheme 3). Irradiation was repeated three times for every reactant, and the product ratios of compounds $\mathbf{2 4 - 3 0}$ were satisfactorily reproducible. Products 24-30 were isolated by column chromatography of the residue left after removal of the solvent using hexane-ethyl acetate $(10: 1)$ as an eluent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the rearrangement products $\mathbf{2 4}, \mathbf{2 5}, \mathbf{2 7}, 28$ and 29 are listed in Table 4 and 5.

Photolysis of the trans-methyl phenyl lactone trans-15 in methanol

Three rearrangement products, 6β-methyl-3a α-phenyl-3,3a, 3b,6-tetrahydro-1H -cyclopenta[1,3]cyclopropa[1,2-c]furan-3-one 6β-24, 1α-methyl- and 1β-methyl-3a α-phenyl-1,1a,3a,4-tetra-hydro-6H-cyclopropa[1,5]cyclopenta[1,2-c]furan-4-one 1α - and $1 \beta-25$ and a dehydrogenated product, 4-methyl-7-phenyl-1,3-dihydroisobenzofuran-1-one 26, were obtained together with recovery of a small amount of the starting material trans- $\mathbf{1 5}$.
$\mathbf{6 \beta}$-Tetrahydrocyclopentacyclopropafuranone 6 $\boldsymbol{6}$-24. Prisms, $\mathrm{mp} 75-76^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: C, 79.7; H, $6.3 \% ; \mathrm{M}^{+}$, 226.0968. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.62 ; \mathrm{H}, 6.24 \% ; \mathrm{M}$, 226.0994); $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1766 ; \mathrm{m} / \mathrm{z} 226\left(\mathrm{M}^{+}, 31 \%\right), 181\right.$ (78), 167 (100), 152 (42), 115 (24) and 91 (28).
1α-Tetrahydrocyclopropacyclopentafuranone $\mathbf{1 \alpha - 2 5}$. Plates, $\mathrm{mp} 94-95^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: M^{+}, 226.1012); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1762 ; \mathrm{m} / \mathrm{z} 226\left(\mathrm{M}^{+}, 10 \%\right), 181$ (50), 167 (100), 152 (41), 115 (16) and 91 (10).
$\mathbf{1 \beta - T e t r a h y d r o c y c l o p r o p a c y c l o p e n t a f u r a n o n e ~} \mathbf{1 \beta - 2 5}$. Prisms, $\mathrm{mp} 156-157^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: M^{+}, 226.1004); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1771 ; \mathrm{m} / \mathrm{z} 226\left(\mathrm{M}^{+}, 15 \%\right), 181$ (73), 167 (100), 152 (44), 115 (19) and 91 (16).

Dihydroisobenzofuranone 26. N eedles, mp 118-119 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{M}^{+}, 224.0812 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{M}, 224.0837$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1763 ; \delta_{\mathrm{H}} 2.39(3 \mathrm{H}, \mathrm{s}), 5.24(2 \mathrm{H}, \mathrm{s})$ and $7.34-$ 7.58 (7H , m); $\delta_{\mathrm{c}} 17.0$ (q), 67.8 (t), 121.3 (s), 127.8 (d), 128.0 (d), 129.4 (d), 130.9 (d), 131.0 (s), 134.5 (d), 136.4 (s), 140.1 (s), 146.6 (s) and 170.2 (s); m/z 224 (${ }^{+}$, 95\%), 195 (100), 165 (33) and 152 (29).

Photolysis of cis-methyl phenyl lactone cis-15 in methanol

Three rearrangement products, 6α-methyl-3a α-phenyl-3,3a, 3b,6-tetrahydro-1H -cyclopenta[1,3]cyclopropa[1,2-c] furan-3-one $6 \alpha-24$, tetrahydrocyclopropacyclopentafuranones 1α - and $1 \beta-$ 25 and a dehydrogenated product 26 were obtained together with a recovery of a small amount of the starting material cis15. The physical and spectral properties of compounds $1 \alpha-25$, $1 \beta-25$ and 26 were in accord with those of authentic specimens obtained by irradiation of the trans-counterpart trans- 15 .
$\mathbf{6 \alpha}$-Tetrahydrocyclopentacyclopropafuranone $\mathbf{6} \alpha$-24. Prisms, $\mathrm{mp} 159-160^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 79.8; H, 6.3\%; M ${ }^{+}$, 226.1012. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.62 ; \mathrm{H}, 6.24 \%$; $\mathrm{M}, 226.0994$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1762 ; \mathrm{m} / \mathrm{z} 226\left(\mathrm{M}^{+}, 28 \%\right)$, 181 (72), 167 (100), 152 (43), 115 (23) and 91 (30).

Photolysis of the trans-diphenyl lactone trans-14 in methanol

Four rearrangement products, 3a $\alpha, 6 \beta$-diphenyl-3,3a,3b,6-tetra-hydro-1H -cyclopenta[1,3]cyclopropa[1,2-c] furan-3-one 6 $6 \beta-27$, 3a $\alpha, 6 \beta$-di phenyl-3,3a,3b,6-tetrahydro-1H -cyclopenta[1,3]-cyclopropa[1,2-c]furan-1-one $6 \beta-28, \quad 1 \alpha, 3 a \alpha-$ and 1β,3a $\alpha-$ diphenyl-1,1a,3a,4-tetrahydro-6H -cyclopropa[1,5]cyclopenta[1,2c] furan-4-one 1α - and $1 \beta-29$ and a dehydrogenated product,

4,7-diphenyl-1,3-dihydroisobenzofuran-1-one 30, were obtained together with recovery of a small amount of the starting material trans-14.
3a $\alpha, 6 \beta$-Tetrahydrocyclopentacyclopropafuran-3-one $\mathbf{6 \beta - 2 7}$. Prisms, mp 138-139.5 ${ }^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: $\mathrm{C}, 83.4 ; \mathrm{H}, 5.6 \% ; \mathrm{M}^{+}, 288.1137 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 83.31 ; \mathrm{H}$, 5.59\%; M, 288.1151); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1762 ; \mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}\right.$, 100%), 243 (62), 228 (42), 165 (41), 152 (34), 115 (42) and 91 (59).

3a $\alpha, 6 \beta$-Tetrahydrocyclopentacyclopropafuran-1-one $\mathbf{6 \beta - 2 8 .}$ N eedles, $\mathrm{mp} 198-199^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: $\left.\mathrm{M}^{+}, 288.1173\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1763 ; \mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}, 88 \%\right), 243$ (73), 228 (42), 215 (45), 165 (44), 152 (31), 115 (45), 105 (100) and 91 (41).
1 $\alpha, 3 \mathrm{a} \alpha$-Tetrahydrocyclopropacyclopentafuranone $\quad \mathbf{1 \alpha - 2 9 .}$ N eedles, mp 139.5-140 ${ }^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (F ound: $\left.\mathrm{M}^{+}, 288.1176\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1764 ; \mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}, 26 \%\right), 243$ (100), 229 (56), 165 (55), 152 (26), 115 (25) and 91 (19).

1及,3a α-Tetrahydrocyclopropacyclopentafuranone
 1 β-29.

 Prisms, mp 110-112 ${ }^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (F ound: M^{+}, 288.1124); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1763 ; \mathrm{m} / \mathrm{z} 288$ (M ${ }^{+}, 38 \%$), 243 (100), 229 (57), 165 (49), 152 (22), 115 (25) and 91 (13).Dihydroisobenzofuranone 30. Prisms, mp 173-175 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 83.4; H, 5.0\%; M^{+}, 286.0984. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 83.30; H, 4.93\%; $\mathrm{M}, 286.0994) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1764 ; \delta_{\mathrm{H}} 5.38(2 \mathrm{H}, \mathrm{s})$ and $7.38-7.78$ (12H , m); $\delta_{\mathrm{c}} 68.4(\mathrm{t}), 122.2$ (s), 127.8 (d), 127.9 (d), 128.3 (d), 128.4 (d), 129.1 (d), 129.5 (d), 131.5 (d), 133.5 (d), 135.7 (s), 136.2 (s), 137.4 (s), 141.6 (s), 145.4 (s) and $169.8(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 286\left(\mathrm{M}^{+}, 99 \%\right), 257(100)$ and 228 (27).

Photolysis of the cis-diphenyl lactone cis-14 in methanol

Four rearrangement products, 3a $\alpha, 6 \alpha$-diphenyl-3,3a,3b,6-tetra-hydro-1H -cyclopenta[1,3]cyclopropa[1,2-c] furan-3-one $6 \alpha-27$, 3a $\alpha, 6 \alpha$-diphenyl-3,3a,3b,6-tetrahydro-1H -cyclopenta[1,3]cyclo-propa[1,2-c]furan-1-one $6 \alpha-28$, the tetrahydrocyclopropacyclopentafuranones 1α - and $1 \beta-29$, and a dehydrogenated product 30 were obtained together with recovery of a small amount of the starting material cis-14. The physical and spectral properties of compounds $1 \alpha-29,1 \beta-29$ and 30 were in accord with those of authentic specimens obtained by irradiation of the transcounterpart trans-14.

3a $\alpha, 6 \alpha$-Tetrahydrocyclopentacyclopropafuran-3-one $\quad \mathbf{6 \alpha - 2 7}$. N eedles, $\mathrm{mp} 144-145^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: C, 83.5; $\mathrm{H}, 5.7 \% ; \mathrm{M}^{+}, 288.1176 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ requires C, $83.31 ; \mathrm{H}$, $5.59 \% ; \mathrm{M}, 288.1151) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1763 ; \mathrm{m} / \mathrm{z} 288\left(\mathrm{M}^{+}\right.$, 100\%), 243 (54), 228 (34), 165 (27), 152 (18), 115 (21) and 91 (27).

3a $\alpha, 6 \alpha$-Tetrahydrocyclopentacyclopropafuran-1-one $\quad \mathbf{6 \alpha - 2 8 .}$ Prisms, mp 107.5-108.5 ${ }^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: C, 83.6; H, $5.7 \% ; \mathrm{M}^{+}, 288.1148$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1762 ; \mathrm{m} / \mathrm{z}$ 288 ($\mathrm{M}^{+}, 100 \%$), 243 (80), 228 (37), 215 (43), 165 (43), 152 (26), 115 (37), 105 (81) and 91 (30).

Photolysis of compounds 14 and 15 in acetone

Compounds 14 and 15 in acetone were photolysed under the conditions described in the general experimental section, and the results are listed in Tables 2 and 3 in Scheme 3.

Photolysis of the tetrahydrocyclopropacyclopentafuranones 1α $25,1 \beta-25,1 \alpha-29$ and $1 \beta-29$ in acetone
A solution of compound $1 \alpha-25$ ($5.0 \mathrm{mg}, 0.022 \mathrm{mmol}$) in degassed acetone ($1.5 \mathrm{~cm}^{3}$) in a Pyrex test tube was irradiated for 9 h . Removal of the solvent left a pale yellow oil (5.0 mg) which was a $5: 1: 2.1$: 5 mixture of compounds $1 \alpha-24,1 \beta-24$ and $1 \beta-25$ and the starting material $1 \alpha-25$ (by ${ }^{1} \mathrm{H}$ NMR spectroscopy).

In a similar manner, compound $1 \beta-25$ ($5.0 \mathrm{mg}, 0.022 \mathrm{mmol}$) afforded a 2.2:1.2:2.7:1 mixture of compounds $1 \alpha-24,1 \beta-24$ and $1 \alpha-25$ and the starting material $1 \beta-25$ (by ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectroscopy).

In a similar manner compound $1 \alpha-29(5.0 \mathrm{mg}, 0.017 \mathrm{mmol})$ afforded a 1:1.6:3.6 mixture of compounds $1 \alpha-27$ and $1 \beta-29$ and the starting material $1 \alpha-29$ (by ${ }^{1} \mathrm{H}$ NMR spectroscopy). Formation of a trace amount of compound $1 \beta-27$ was detected on the basis of the ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectrum.
In a similar manner, compound $1 \beta-29(5.0 \mathrm{mg}, 0.017 \mathrm{mmol})$ afforded a 1:3.7:1.7 mixture of compounds $1 \alpha-27$ and $1 \alpha-29$ and the starting material $1 \beta-29$ (by ${ }^{1} \mathrm{H}$ NMR spectroscopy). Formation of a trace amount of compound $1 \beta-27$ was detected on the evidence of the ${ }^{1} H N M R$ spectrum.

C atalytic hydrogenation of the photoproducts $6 \beta-27,6 \beta-28,1 \alpha$ 29 and 1 1 -29
A suspension of 5\% palladium-on-carbon (20 mg) in ethanol (2 cm^{3}) was pre-equilibrated with hydrogen. To the suspension was added a solution of compound $6 \beta-27(24 \mathrm{mg}, 0.083 \mathrm{mmol})$ in ethanol ($4 \mathrm{~cm}^{3}$), and hydrogenation was continued at room temperature and atmospheric pressure for 5 h . The catalyst was filtered off, and the filtrate was evaporated to give quantitatively a solid which, on PTLC (hexane-acetone, $50: 1$), gave 3a, 6β -diphenyl-3,3a,3b,4,5,6-hexahydro-1H -cyclopenta[1,3]cyclopropa-[1,2-c]furan-3-one 31 ($21.5 \mathrm{mg}, 89 \%$) and 2,3'-dipheny Ispiro-cyclopentane-1,4'-tetrahydrofuran-2'-one 32 ($1.3 \mathrm{mg}, 5 \%$).

Hexahydrocyclopentacyclopropafuran-3-one 31. Prisms, mp $149.5-150{ }^{\circ} \mathrm{C}$ (from EtOH) ($\mathrm{M}^{+}, 290.1280 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{M}, 290.1307$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1760 ; \delta_{\mathrm{H}} 0.92(1 \mathrm{H}$, dddd, J 14.0, 10.5, 9.0 and 9.0), 1.50 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0$ and 9.5), 1.95 (1 H , dd, J 14.0 and 9.0), 2.19 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0$), 2.39 (1 H , dddd, J 14.0, 10.5, 9.5 and 5.0), 3.44 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$), 4.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0$), 4.27 (1H, br d, J 10.0), 7.21-7.29 (3H , m) and 7.32-7.45 (7H , m); δ_{c} 25.9 (t), 31.8 (t), 34.2 (d), 39.4 (s$), 45.2$ (d), 47.5 (s$), 69.2(\mathrm{t})$, 127.0 (d), 127.1 (d), 128.3 (d), 128.98 (d), 129.04 (d), 130.0 (d), 131.3 (s), 142.9 (s) and 176.2 (s); m/z 290 (${ }^{+}$, 68\%), 245 (95), 142 (73), 128 (59), 115 (71), 104 (100) and 91 (67).

Spirotetrahydrofuranone 32. N eedles, $\mathrm{mp} 65-67^{\circ} \mathrm{C}$ (from diethyl ether) $\left(\mathrm{M}+, 292.1438 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}\right.$ requires $\left.\mathrm{M}, 292.14643\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1758 ; \delta_{\mathrm{H}} 1.77-2.09(6 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8.5 and 5.5), $3.52(1 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0), 4.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 10.0), 6.71-6.74 ($2 \mathrm{H}, \mathrm{m}$), 7.13-7.20 ($5 \mathrm{H}, \mathrm{m}$) and 7.36-7.44 (3H, $\mathrm{m}) ; \delta_{\mathrm{c}} 23.7(\mathrm{t}), 33.1(\mathrm{t}), 39.5(\mathrm{t}), 47.2(\mathrm{~d}), 55.8(\mathrm{~s}), 58.3(\mathrm{~d}), 75.2$ (t), 126.6 (d), 127.9 (d), 128.0 (d), 128.4 (d, 129.0 (d), 129.1 (d), 134.7 (s), 142.4 (s) and 177.6 (s); m/z 292 (${ }^{+}$, 3\%), 157 (100), 129 (53), 115 (39) and 91 (70).
In a similar manner, compound $6 \beta-28$ ($14.0 \mathrm{mg}, 0.049 \mathrm{mmol}$) afforded quantitatively a solid which, on recystallisation from ethanol, gave $3 a \beta, 6 \alpha$-diphenyl-3,3a,3b,4,5,6-hexahydro-1H-cyclopenta[1,3]cyclopropa[1,2-c] furan-1-one 33 ($12.9 \mathrm{mg}, 92 \%$) as prisms, mp $218-219.5^{\circ} \mathrm{C}\left(\mathrm{M}^{+}, 290.1285 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}\right.$ requires $\mathrm{M}, 290.1307) ; v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1761 ; \delta_{\mathrm{H}} 0.79-0.89(1 \mathrm{H}, \mathrm{m})\right.$, 1.30 (1 H , dd-like, J 14.0 and 8.5), 1.95-2.01 ($1 \mathrm{H}, \mathrm{m}$), 2.32-2.42 ($1 \mathrm{H}, \mathrm{m}$), 2.38 ($1 \mathrm{H}, \mathrm{br}$-like), 3.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$), 4.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.5), $4.33(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 9.5)$ and $7.21-7.46(10 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 24.5(\mathrm{t})$, 33.5 (t), 37.8 (d), 41.4 (s), 42.7 (s), 43.6 (d), 76.8 (t), 126.5 (d), 127.3 (d), 128.26 (d), 128.29 (d), 128.7 (d), 129.4 (d), 135.0 (s), 142.9 (s) and 173.7 (s); m/z $290\left(\mathrm{M}^{+}, 3 \%\right), 245$ (36), 142 (11), 128 (13), 115 (12), 104 (100) and 91 (13).

In a similar manner, compound $1 \alpha-29$ ($12.0 \mathrm{mg}, 0.04 \mathrm{mmol}$) afforded quantitatively a solid which, on recrystallisation from ethanol, gave 3a-benzyl-6a-phenylhexahydro-1H-cyclopenta[c]-furan-1-one 34 (10.9 $\mathrm{mg}, 90 \%$) as needles, $\mathrm{mp} 94-95^{\circ} \mathrm{C}\left(\mathrm{M}^{+}\right.$, 292.1481. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{M}, 292.1463$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1758; δ_{H} 1.63-1.77 (2H, m), 1.92-2.01 (1H, m), 2.08-2.17 (1H, m), $2.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5), 2.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5), 2.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$ and 5.5), 4.02 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5$), 4.36 (1 H, br d, J 9.5), 6.97-7.01 ($2 \mathrm{H}, \mathrm{m}$) and 7.16-7.43(8H,m); $\delta_{\mathrm{c}} 23.8(\mathrm{t}), 35.8(\mathrm{t}), 38.2(\mathrm{t}), 42.3$ (t$), 53.9$ (s), 64.1 (s), 76.5 (t), 126.7 (d), 127.3 (d), 127.7 (d), 128.4 (d), 128.8 (d), 129.3 (d), 136.8 (s), 137.3 (s) and 182.0 (s); $\mathrm{m} / \mathrm{z} 292$ ($\left.{ }^{+}, 13 \%\right), 201$ (12), 157 (97), 129 (98) and 91 (100). In a similar manner, compound $1 \beta-29$ ($13 \mathrm{mg}, 0.05 \mathrm{mmol}$) afforded needles ($11.6 \mathrm{mg}, 89 \%$), the physical and spectral
properties of which were identical with those of an authentic specimen of compound 34 obtained from compound $1 \alpha-29$.

X-R ay crystallography

D ata for both compounds cis- and trans-14 were measured on a Rigaku AFC5R diffractometer with graphite-monochromated M o-K α radiation ($\lambda=0.71069 \AA$). Their structures were solved by direct methods (MITHRIL). ${ }^{12}$ Full-matrix least-squares refinement was employed with anisotropic thermal parameters for all non-hydrogen atoms. All computations for the structure determination were carried out on a VAX station 3200 using the crystallographic program package TEXSAN. ${ }^{13}$ ORTEP drawings of compounds cis- and trans-14 are shown in Figs. 2 and 3, respectively. Tables of atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic D ata C entre (CCDC).\|

Crystal data for the cis-diphenyl lactone cis-14. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$, $M=288.35$, monoclinic, space group $P 2_{1} / c, a=9.128(7), b=$ $14.800(2), \mathrm{c}=11,803(2) \AA, a=90.00^{\circ}, \beta=106.52(2)^{\circ}, \gamma=90.00^{\circ}$, $V=1529(1) \AA^{3}, Z=4, \mu(\mathrm{M} 0-K \alpha)=0.74 \mathrm{~cm}^{-1}, F(000)=608$, $\mathrm{D}_{\mathrm{c}}=1.253 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal dimensions: $0.10 \times 0.10 \times 0.20 \mathrm{~mm}$. A total of 3882 reflections (3664 unique) were collected using the $\omega-2 \theta$ scan technique to a maximum 2θ value of 55° and 1468 reflections with $\mathrm{I}>3 \sigma(\mathrm{I})$ were used in the structure determination. F inal R and R_{w} values were 0.039 and 0.043 , respectively. The maximum and minimum peaks in the difference map were 0.11 and -0.12 e \AA^{-3}, respectively.

C rystal data for the trans-diphenyl lactone trans-14. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2}$ $M=288.35$, triclinic, space group $P 1, a=8.830(1), b=$ 14.071(2), $\quad \mathrm{C}=6.2948(2) \quad \AA, \quad a=102.927(8)^{\circ} \quad \beta=97.01(1)^{\circ}$ $\gamma=102.506(9)^{\circ}, V=732.1(2) \AA^{3} ; Z=2, \mu(\mathrm{M} 0-\mathrm{K} \alpha)=0.78 \mathrm{~cm}^{-1}$, $F(000)=304, D_{c}=1.308 \mathrm{~g} \mathrm{~cm}^{-3}$, crystal dimensions: $0.20 \times$ $0.20 \times 0.30 \mathrm{~mm}$. A total of 3586 reflections (3366 unique) were collected using the $\omega-2 \theta$ scan technique to a maximum 2θ value of 55°, and 1902 reflections with $\mathrm{I}>3 \sigma(\mathrm{I})$ were used in the structure determination. F inal R and R_{w} values were 0.044 and 0.049 , respectively. The maximum and minimum peaks in the difference map were 0.17 and -0.17 e \AA^{-3}, respectively.

Acknowledgements

We are grateful to Professor Takefumi Momose, Toyama M edical and Pharmaceutical University, for helpful sugges-
|| For details of the deposition scheme, see Instructions for Authors, j. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/132.
tions. Financial support from the Environmental Science Research Institute of K inki U niversity is greatly acknowledged. This study was also supported by a Grant-in-A id for Science Research from the Japan Private School Promotion Foundation.

References

1 Part 7, O. M uraoka, G. Tanaba and Y. I gaki, J. Chem. Soc., Perkin Trans. 1, 1997, 1669.
2 T. M omose, K . K anai and T. N akamura, Chem. Pharm. Bull., 1978, 26, 1592; H eterocycles, 1976, 4, 1481.
3 T. M omose, G. Tanabe, H. Tsujimori and O. M uraoka, Chem. P harm. Bull., 1992, 40, 2525; T. M omose, G. Tanabe, H. Tsujimori, M. Higashiura, I. Imanishi and K . K anai, H eterocycles, 1989, 29, 257.

4 O. M uraoka, G. Tanabe, K. Sano, T. M inematsu and T. M omose, J. Chem. Soc., Perkin Trans. 1, 1994, 1833; O. M uraoka, G. Tanabe, K. Sano and T. M omose, H eterocycles, 1992, 34, 1093.

5 O. M uraoka, G. Tanabe, K. Sano, T. M inematsu and T. M omose, J. Chem. Soc., Perkin Trans. 1, 1995, 1437; O. M uraoka, G. Tanabe and T. M omose, H eterocycles, 1990, 31, 1589.
6 K. F riedrich and H.-G. Henning, C hem. Ber., 1959, 92, 2944.
7 L. F. Fieser and M. J. H addadin, J. A m. Chem. Soc., 1964, 86, 2392.
8 A. N umata, K . Ohno, H. Irie and S. U yeo, Yakugaku Z asshi, 1968, 88, 1151 (C hem. A bstr,, 1969, 70, 47 193a).
9 M. Schlosser and K. F. Christmann, L iebigs A nn. C hem., 1967, 708, 1.

10 D. G. Morris, in The Chemistry of the Cyclopropyl Group, ed. Z. Rappoport, John Wiley and Sons, New York, 1987, Part 1, p. 101.

11 (a) R. K. Dhar, A. Sygula, F. R. Fronczek and P. W. Rabideau, Tetrahedron, 1992, 48, 9417; (b) P. W. Rabideau, J. L. M ooney and K. B. Lipkowitz, J. Am. Chem. Soc., 1986, 108, 8130; (c) P. W. Rabideau, K. B. Lipkowitz and R. B. Nachbar Jr., J. Am. C hem. Soc., 1984, 106, 3119; (d) P. W. R abideau and D. M. Wetzel, J. Org. Chem., 1982, 47, 3993; (e) K. B. Lipkowitz, P. W. Rabideau, D. J. Raber, L. E. Hardee, P. v. R. Schleyer, A. J. K os and R. A. K ahn, J. Org. Chem., 1982, 47, 1002; (f) P. W. R abideau, A cc. Chem. Res., 1978, 11, 141; (g) W. B. Smith and B. A. Shoulders, J. Phys. C hem., 1965, 69, 2022, and references cited therein.

12 C. J. G ilmore, J. A ppl. C rystallogr., 1984, 17, 42.
13 TEXSAN: TEXRAY Structure A nalysis Package, M olecular Structures Corporation, The Woodland, Texas, 1985.

Paper 7/021081
R eceived 26th M arch 1997
A ccepted 10th J une 1997

[^0]: \dagger Generally, coupling constants of corresponding protons in cyclopropyl systems have been reported as follows: $J_{\text {cis }}=6-10 \mathrm{~Hz}$ and $\mathrm{J}_{\text {trans }}=3-5 \mathrm{~Hz}$. (ref. 10).

[^1]: \ddagger M olecular mechanics calculations for these compounds employed the M M 2 forcefield using Chem 3D Plus ${ }^{\text {TM }}$.
 § The energy barrier in the chair-boat-chair interconversion has been reported to be near $11 \mathrm{kcal} \mathrm{mol}^{-1}$ (ref. 11c).

[^2]: II The homoallylic coupling constant between two pseudoaxial protons in a substituted cyclohexa-1,4-diene system have been reported to be 12 $\mathrm{Hz}\left(\mathrm{J}_{1,4 \mathrm{cis}}\right)$, while one between two pseudoequatorial protons to be 2.6 $\mathrm{Hz}\left(\mathrm{J}_{1,4 \mathrm{cis}}\right)$. In the planar structure, corresponding coupling constants have been reported to be $8.3 \mathrm{~Hz}\left(\mathrm{~J}_{1.4 \mathrm{cis}}\right)$ or $7.5 \mathrm{~Hz}\left(\mathrm{~J}_{1,4 \mathrm{trans}}\right)$ (ref. 11d and 11f).

